ПУЭ релейная защита и автоматика - VISTAGRUP.RU

ПУЭ релейная защита и автоматика

Основные требования ПУЭ к релейной защите от повреждений и ненормальных режимов.

Ответ:К релейной защите предъявляются следующие основные требования:

· селективность;

· быстродействие;

· чувствительность;

· надежность.

1. Селективность или избирательность это способность релейной защиты выявлять место повреждения и отключать его только ближайшими к нему выключателями.

Рис. 2.1. Релейная защита радиальной цепи.

Селективное действие – это такое действие релейной защиты, при котором обеспечивается отключение только поврежденного элемента системы. Так, применительно к схеме радиальной сети, показанной на рисунке 2.1, требование селективности действия сводится к тому, чтобы при КЗ в точке К1 отключался только выключатель Q3, а при КЗ в точке К2 – выключатель Q2.

Обратимся к рис.2.2

При КЗ в точке К1(рис.2.2) для правильной ликвидации аварии должна подействовать защита на выключателе Q1и отключить этот выключатель. При этом остальная неповрежденная часть электрической установки останется в работе. Такое избирательное действие защиты называется селективным.

Если же при КЗ в точке К1раньше защиты выключателя Q1 подействует защита выключателя Q2и отключит этот выключатель, то ликвидация аварии будет неправильной, так как кроме поврежденного электродвигателя M1, останется без напряжения неповрежденный электродвигатель М2. Такое действие защиты называется неселективным.

Из рис.2.2 видно, что если при КЗ в точке K1 подействует неправильно защита выключателя Q3и отключит этот выключатель, то последствия такого неселективного действия будут еще более тяжелыми, так как без напряжения останутся оба неповрежденных электродвигателя М2 и МЗ. В технике релейной защиты принято называть предыдущая (нижестоящая) и последующая (вышестоящая) защиты на смежных линиях. Так на рис.2.2 у выключателя Q1 установлена предыдущая защита, а у выключателя Q2 – последующая. Нумерацию защит начинают от самой удаленной от источника питания защиты.

Рассмотренный пример показывает, что выполнение требования селективности имеет первостепенное значение для обеспечения правильной ликвидации аварий.

Применяется несколько способов обеспечения селективности.

Селективность по принципу действия. Различают релейные защиты с абсолютной и относительной селективностью.

Релейные защиты с абсолютной селективностью в соответствии с принципом их действия срабатывают только при повреждениях на защищаемом элементе. Поэтому они выполняются без выдержек времени. Например, газовая (ГЗ) или дифференциальная защиты трансформатора (ДЗТ). ДЗТ принципиально не срабатывает при КЗ вне зоны действия (например — зона действия дифференциальной защиты ограничивается местом установки питающих ее трансформаторов тока).

Релейные защиты с относительной селективностью. Относительная селективностьдостигаетсяотстройкой по времени от смежных комплектов защит.Защиты с относительной селективностью могут работать в качестве резервных защит при КЗ на смежных элементах. (например — максимальная токовая защита (МТЗ)). Такие защиты обычно выполняются с выдержкой времени

Селективность по чувствительности. Ток, напряжение или сопротивление срабатывания выбирается таким образом, чтобы последующая защита не действовала при КЗ на смежной линии или за трансформатором. Для этого, например токовая отсечка, отстраивается от токов КЗ в конце линии или за трансформатором и, следовательно, обладаетселективностью по чувствительности.

Селективность по времени.Выдержка времени каждой последующей защиты, например, максимальной токовой защиты, выбирается на ступень селективности больше предыдущей защиты. Поэтому последующая защита не успевает сработать, так как ее опережает предыдущая защита линии при КЗ на ней. Этот принцип наиболее прост, однако имеет существенный недостаток, заключающийся в том, что выдержка времени растет по мере приближения точки КЗ к источнику питания. Величина ступени селективности определяется точностью реле времени защиты, быстродействием примененного выключателя и для электромеханических защит составляет 0,5 с, а для современных микропроцессорных защит – 0.2…0.3 с.

Логическая селективностьприменяется в том случае если смежные, как в предыдущем примере, защиты объединены линией связи. При этом последующая защита сработает без выдержки времени (быстродействующая ступень) при условии, что не запустилась предыдущая защита. Пуск предыдущей защиты свидетельствует о том, что КЗ произошло на смежной линии и последующая защита переводится в режим временной селективности, т.е. она сработает, если откажет предыдущая защита или ее выключатель. Логическую селективность целесообразно применять на коротких линиях и при использовании цифровых реле, у которых есть специальный вход «логического ожидания».

2. Быстродействие— это свойство релейной защиты отключать повреждение с минимально возможной выдержкой времени, т.к. быстрое отключение поврежденного оборудования или участка электрической установки предотвращает или уменьшает размеры повреждений, сохраняет нормальную работу потребителей неповрежденной части установки, предотвращает нарушение параллельной работы генераторов. Длительное протекание тока КЗ может привести к повреждению неповрежденных участков оборудования, линий, трансформаторов, по которым протекает ток КЗ вследствие термического перегрева оборудования. Допустимое время протекания тока через оборудование, не вызывающее его повреждения, указывается в ГОСТах на оборудование и находится в обратно-пропорциональной зависимости от величины тока КЗ.

Быстродействие необходимо по следующим соображениям:

1. При КЗ мощность, отдаваемая генераторами станции, вблизи которой произошло КЗ, резко снижается. В результате скорость вращения генераторов возрастает. Если КЗ отключается защитой, имеющей выдержку времени, то к моменту его отключения генераторы этой станции выйдут из синхронизма, то есть генераторы потеряют устойчивость.

2. КЗ в любом элементе системы приводит к понижению напряжения, снижению вращающего момента СД и АД и их торможение. При быстром отключении КЗ двигателя немедленно возвращаются к нормальному режиму, их торможение не является опасным и не нарушает механического процесса, а в ряде случаев остается совершенно незаметным. Отключение КЗ с выдержкой времени может привести к их полной остановке и нарушению технологического процесса.

3. Быстрое отключение КЗ уменьшает размеры разрушение изоляции и токоведущих частей токами КЗ в месте повреждения, уменьшает вероятность несчастных случаев.

4. Ускорение отключения повреждений повышает эффективность АПВ и АВР, так как чем меньшие разрушения в месте КЗ, тем выше вероятность успешного действия автоматики.

Быстрота отключения ограничивается собственными временами действия релейной защиты и выключателя, а так же условиями обеспечения селективной работы релейной защиты. В общем случае время отключения равно:

,

где – собственное время релейной защиты; – выдержка времени, установленная на защите; – собственное время выключателя, т.е. время от подачи импульса на катушку отключения до момента начала расхождения дугогасительных контактов выключателя; – время горения дуги; – полное время отключения выключателя.

Для защит, действующих без выдержки времени, в зависимости от типов реле и выключателей время отключения оказывается равным

Таким образом, при существующих типах реле и выключателей нижний предел времени отключения КЗ может составлять 3…12 периодов тока частотой 50 Гц.

Для обеспечения устойчивости параллельной работы генераторы, трансформаторы, линии электропередачи, по которым осуществляется параллельная работа и все другие части электрической установки или электрической сети должны оснащаться быстродействующей релейной защитой, время действия которой не должно превышать 0,1 с, а для линий сверхвысокого напряжения – не более 0,02 с.

3. Чувствительность — это свойство защиты надежно срабатывать при КЗ в конце защищаемого участка в минимальном режиме работы системы.

Защита должна обладать такой чувствительностью к тем видам повреждений и нарушений нормального режима работы в данной электроустановке или электрической сети, на которые она рассчитана, чтобы было обеспечено ее действие в начале возникновения повреждения. Чувствительность защиты должна также обеспечивать ее действие при повреждениях на смежных участках. Так, например, если при повреждении в точке K1 (рис.2.2) по какой-либо причине не отключится выключатель Q1, то должна подействовать защита следующего к источнику питания выключателя Q2и отключить этот выключатель. Такое действие защиты называется дальним резервированием смежного участка.

Чувствительность защиты оценивается коэффициентом чувствительности (Кч), определяемым как отношение минимального значения контролируемой величины при КЗ в конце защищаемого участка к уставке защиты. Коэффициенты чувствительности нормируются ПУЭ и минимальная их величина составляет при КЗ в защищаемой зоне Кч=1,5, в зоне резервирования – Кч=1,2, для быстродействующих дифференциальных защит Кч=2.

Коэффициент чувствительности учитывает погрешности реле, погрешности расчета параметров срабатывания РЗ, влияние переходного сопротивления и электрической дуги в месте КЗ.

4. Надежность – это свойство защиты гарантированно выполнять свои функции на протяжении всего периода эксплуатации. Защита должна правильно и безотказно действовать на отключение выключателей оборудования при всех его повреждениях и нарушениях нормального режима работы и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима работы, при которых действие данной защиты не предусмотрено. Требование надежности обеспечивается совершенством принципов защиты и конструкций аппаратуры, добротностью деталей, простотой выполнения, а также уровнем эксплуатации.

Требуемое состояние устройств защиты поддерживается плановыми проверками релейной защиты, при которых необходимо выявить и устранить возникшие дефекты. У современных микропроцессорных устройств защиты существуют встроенные системы автоматической и тестовой проверки, которые позволяют быстро выявить появившиеся неисправности и тем самым предотвратить отказ или неправильную работу защиты. Глубина таких проверок может быть большой, но не 100%.Поэтому наличие тестовых проверок или автоматического контроля не исключает необходимости плановых проверок, но существенно уменьшают их частоту и объем проведения.

Релейная защита и автоматика

Релейная защита — комплекс автоматических устройств, предназначенных для быстрого (при повреждениях) выявления и отделения от электроэнергетической системы повреждённых элементов этой электроэнергетической системы в аварийных ситуациях с целью обеспечения нормальной работы всей системы. Действия средств релейной защиты организованы по принципу непрерывной оценки технического состояния отдельных контролируемых элементов электроэнергетических систем. Релейная защита (РЗ) осуществляет непрерывный контроль состояния всех элементов электроэнергетической системы и реагирует на возникновение повреждений и ненормальных режимов. При возникновении повреждений РЗ должна выявить повреждённый участок и отключить его от ЭЭС, воздействуя на специальные силовые выключатели, предназначенные для размыкания токов повреждения (короткого замыкания).

Читайте также  Чем можно тушить оборудование под действием электротока?

Релейная защита является основным видом электрической автоматики, без которой невозможна нормальная работа энергосистем.

Содержание

Требования к релейной защите

Быстродействие

Быстродействие — это свойство релейной защиты, характеризующее скорость выявления и отделения от электроэнергетической системы повреждённых элементов. Показателем быстродействия является время срабатывания защиты — это интервал времени от момента возникновения повреждения до момента отделения от сети повреждённого элемента.

Селективность (избирательность)

Селективность — свойство релейной защиты, характеризующее способность выявлять поврежденный элемент электроэнергетической системы и отключать этот элемент только ближайшими к нему выключателями. Это позволяет локализовать повреждённый участок и не прерывать нормальную работу других участков сети.

Чувствительность

Чувствительность — это свойство, характеризующее способность релейной защиты выявлять повреждения в конце установленной для неё зоны действия в минимальном режиме работы энергосистемы. Другими словами — это способность чувствовать те виды повреждений и ненормальных режимов, на которые она рассчитана, в любых состояниях работы защищаемой электрической системы. Показателем чувствительности выступает коэффициент чувствительности, который для максимальных защит (реагирующих на возрастание контролируемой величины) определяется как отношение минимально возможного значения сигнала, соответствующего отслеживаемому повреждению, к установленному на защите параметру срабатывания (уставке).

Надёжность

Надежность — это свойство, характеризующее способность релейной защиты действовать правильно и безотказно во всех режимах контролируемого объекта при всех видах повреждений и ненормальных режимов для действия при которых данная защита предназначена, и не действовать в нормальных условиях, а также при таких повреждениях и нарушениях нормального режима, при которых действие данной защиты не предусмотрено. Иными словами, надежность — это свойство релейной защиты, характеризующее ее способность выполнять свои функции в условиях эксплуатации, ремонта, хранения и транспортировки. Основные показатели надёжности — время безотказной работы и интенсивность отказов (количество отказов за единицу времени).

Резервирование следующего участка

Резервирование следующего участка — важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.

Основные органы релейной защиты

Пусковые органы

Пусковые органы непрерывно контролируют состояние и режим работы защищаемого участка цепи и реагируют на возникновение коротких замыканий и нарушения нормального режима работы. Выполняются обычно с помощью реле тока, напряжения, мощности и др.

Измерительные органы

Измерительные органы определяют место и характер повреждения и принимают решения о необходимости действия защиты. Измерительные органы также выполняются с помощью реле тока, напряжения, мощности и др. Функции пускового и измерительного органа могут быть объединены в одном органе.

Логическая часть

Логическая часть — это схема, которая запускается пусковыми органами и, анализируя действия измерительных органов, производит предусмотренные действия (отключение выключателей, запуск других устройств, подача сигналов и пр.). Логическая часть состоит, в основном, из элементов времени (таймеров), логических элементов, промежуточных и указательных реле, дискретных входов и аналоговых выходов микропроцессорных устройств защиты.

Пример логической части релейной защиты

Катушка реле тока K1 (контакты А1 и А2) включена последовательно со вторичной обмоткой трансформатора тока ТА. При коротком замыкании, на участке цепи, в котором установлен трансформатор тока, возрастает сила тока, и пропорционально ей возрастает сила тока во вторичной цепи трансформатора тока. При достижении силой тока значения установки реле K1, оно сработает и замкнёт рабочие контакты (11 и 12). Цепь между шинами +EC и -EC замкнётся, и запитает сигнальную лампу HLW.

Данная схема приведена как простой пример. В эксплуатации используются более сложные логические схемы.

Основные механизмы релейной защиты

Токовая защита

Токовая защита — это разновидность релейной защиты, которая реагирует на превышение тока на защищаемом участке сети по отношению к току срабатывания, или уставке. В зависимости от того, каким образом обеспечивается селективность действия с последующей (от источника питания) защитой, различают максимальную токовую защиту (МТЗ) и токовую отсечку (ТО). В радиальных (разомкнутых) сетях на ВЛ класса напряжения 6-10 кВ и выше наиболее распространённым вариантом организации защит от трёхфазных и междуфазных коротких замыканий является применение двухступенчатой защиты, включающей МТЗ и ТО. Для реализации МТЗ в ряде случаев применяются реле с зависимой от времени защитной характеристикой, а для ТО — всегда с независимой. При этом защита может выполняться на двух отдельных реле, или на одном реле, совмещающем обе ступени (например, РТ-80 и РТ-90), а также на базе цифровых многоступенчатых реле (SPAC и др.).

Максимальная токовая защита (МТЗ) — селективность действия обеспечивается за счёт задержки по времени срабатывания. Выбор тока срабатывания МТЗ осуществляется таким образом, чтобы его значение превышало максимальный рабочий ток в месте установки защиты на величину, которая зависит от коэффициентов надёжности и возврата реле, а также от коэффициента самозапуска (обычно не менее, чем в 1,2 — 2,0 раза). Это исключает возможность ложного действия защиты в нормальном режиме работы сети. При протекании тока КЗ срабатывание реле, как было отмечено ранее, происходит с определённой задержкой. Уставка по времени срабатывания предыдущей (от источника питания) защиты должна быть больше, чем уставка последующей, на величину так называемой ступени селективности Δt (порядка 0,2 — 1,0 с — в зависимости от типа реле, на базе которых выполнены защиты). Таким образом, в радиальных секционированных сетях при коротком замыкании в конце линии первой должна сработать ближайшая к месту возникновения КЗ защита, а в случае её отказа (через промежуток времени, равный ступени селективности) — предыдущая защита. Очевидно, что недостатком МТЗ является «накопление» задержек по времени, т.е. увеличение времени срабатывания защиты при переходе от конца линии к источнику. Следует учитывать, что токи короткого замыкания тем выше, чем ближе место возникновения КЗ к источнику питания. Таким образом, в радиальных секционированных сетях время отключения повреждённой линии посредством сигнала МТЗ при наиболее тяжёлых КЗ вблизи питающих шин может оказаться неприемлемым с точки зрения термической стойкости оборудования. Считается нормальным, если максимальная уставка по времени срабатывания не превышает 2,0 — 2,5 с. Коэффициент чувствительности МТЗ определяется как отношение тока междуфазного КЗ в конце защищаемой зоны к фактическому току срабатывания защиты, и в соответствии с требованиями ПУЭ (см. п.3.2.1. — 4.1.) должен составлять не менее 1,5 (для зоны дальнего резервирования в пределах действия последующей защиты — около 1,2).

Токовая отсечка (ТО) — селективность действия обеспечивается за счёт отстройки от максимального тока КЗ в конце защищаемой зоны. ТО представляет собой быстродействующую защиту, которая срабатывает без задержки по времени, и отключает наиболее тяжёлые короткие замыкания вблизи питающих шин. Величина тока срабатывания отсечки должна приблизительно в 1,1 — 1,2 раза превышать расчётный ток трёхфазного КЗ в конце зоны действия ТО (т.е. в месте установки последующей защиты); указанная кратность определяется коэффициентом надёжности применяемых реле. Коэффициент чувствительности ТО, исходя из п.3.2.26. ПУЭ, может быть рассчитан как отношение тока трёхфазного КЗ в месте установки защиты к фактическому току срабатывания отсечки, и должен составлять не менее 1,2. Иначе говоря, зона действия токовой отсечки должна покрывать около 20% от длины линии. Недостатком токовой отсечки является ограниченность зоны действия, поэтому она применяется только совместно с МТЗ в качестве второй ступени; при этом ТО обладает абсолютной селективностью, т.к. величина тока КЗ вне защищаемой зоны всегда меньше тока срабатывания отсечки.

Реле токовой защиты с высоковольтной изоляцией — специальные реле тока с высоковольтной изоляцией (от 5 до 100 кВ) между входом (катушкой управления) и выходом (герконом). В некоторых конструкциях катушка отсутствует и источником управляющего сигнала служит высоковольтная токоведущая шина. Эти реле тока, получившие название «геркотронов» или «высоковольтных изолирующих интерфейсов», предназначены для защиты от перегрузок по току мощных высоковольтных источников питания, рентгеновской аппаратуры, мощных лазеров, радаров, радиопередающих устройств, электрофизической аппаратуры. Они выполнены в виде компактных модулей, включаемых напрямую в разрыв токовой цепи, находящейся под высоким потенциалом, а их выходной контакт — напрямую в низковольтную цепь. Впервые эти устройства были разработаны и внедрены В. И. Гуревичем. Они защищены многочисленными авторскими свидетельствами на изобретения и патентами. Их описания можно найти в книгах В. И. Гуревича (см. ниже).

ПУЭ релейная защита и автоматика

ЭЛЕКТРОСНАБЖЕНИЕ И ЭЛЕКТРИЧЕСКИЕ СЕТИ

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

1.2.1. Настоящая глава Правил распространяется на все системы электроснабжения. Системы электроснабжения подземных, тяговых и других специальных установок, кроме требований настоящей главы, должны, соответствовать также требованиям специальных правил.

1.2.2. Э н е р г е т и ч е с к о й с и с т е м о й (э н е р г о с и с т е м о й) называется совокупность электростанций, электрических и тепловых сетей, соединенных между собой и связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической энергии и теплоты при общем управлении этим режимом.

1.2.3. Э л е к т р и ч е с к о й ч а с т ь ю э н е р г о с и с т е м ы называется совокупность электроустановок электрических станции и электрических сетей энергосистемы.

1.2.4. Э л е к т р о э н е р г о т и ч е с к о й с и с т е м о й называется электрическая часть энергосистемы и питающиеся от нее приемники электрической энергии, объединенные общностью процесса производства, передачи, распределения и потребления электрической энергии.

Читайте также  Правила складирования материалов на строительной площадке

1.2.5. Э л е к т р о с н а б ж е н и е м называется обеспечение потребителей электрической энергией.

С и с т е м о й э л е к т р о с н а б ж е н и я называется совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.

1.2.6. Ц е н т р а л и з о в а н н ы м э л е к т р о с н а б ж е н и е м называется электроснабжение потребителей от энергосистемы.

1.2.7. Э л е к т р и ч е с к о й с е т ь ю называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных (ВЛ) и кабельных линий электропередачи, работающих на определенной территории.

1.2.8. П р и е м н и к о м э л е к т р и ч е с к о й э н е р г и и (э л е к т р о п р и е м н и к о м) называется аппарат, агрегат, механизм, предназначенный для преобразования электрической энергии в другой вид энергии.

1.2.9. П о т р е б и т е л е м э л е к т р и ч е с к о й э н е р г и и называется электроприемник или группа электроприемников, объединенных технологическим процессом и размещающихся на определенной территории.

1.2.10. Н е з а в и с и м ы м и с т о ч н и к о м п и т а н и я электроприемника или группы электроприемников называется источник питания, на котором сохраняется напряжение в пределах, регламентированных настоящими Правилами для послеаварийного режима, при исчезновении его на другом или других источниках питания этих электроприемников.

К числу независимых источников питания относятся две секции или системы шин одной или двух электростанций и подстанций при одновременном соблюдении следующих двух условий:

1) каждая из секций или систем шин в свою очередь имеет питание от независимого источника питания;

2) секции (системы) шин не связаны между собой или имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций (систем) шин.

1.2.11. При проектировании систем электроснабжения и реконструкции электроустановок должны рассматриваться следующие вопросы:

1) перспектива развития энергосистем и систем электроснабжения с учетом рационального сочетания вновь сооружаемых электрических сетей с действующими и вновь сооружаемыми сетями других классов напряжения;

2) обеспечение комплексного централизованного электроснабжения всех потребителей, расположенных в зоне действия электрических сетей, независимо от их ведомственной принадлежности;

3) ограничение токов КЗ предельными уровнями, определяемыми на перспективу;

4) снижение потерь электрической энергии.

При этом должны рассматриваться в комплексе внешнее и внутреннее электроснабжение с учетом возможностей и экономической целесообразности технологического резервирования.

При решении вопросов резервирования следует учитывать перегрузочную способность элементов электроустановок, а также наличие резерва, в технологическом оборудовании.

1.2.12. При решении вопросов развития систем электроснабжения следует учитывать ремонтные, аварийные и послеаварийные режимы.

1.2.13. При выборе независимых взаимно резервирующих источников питания, являющихся объектами энергосистемы, следует учитывать вероятность одновременного зависимого кратковременного снижения или полного исчезновения напряжения на время действия релейной защиты и автоматики при повреждениях в электрической части энергосистемы, а также одновременного длительного исчезновения напряжения на этих источниках питания при тяжелых системных авариях.

1.2.14. Требования 1.2.11—1.2.13 должны быть учтены на всех промежуточных этапах развития энергосистем и систем электроснабжения потребителей.

1.2.15. Проектирование электрических сетей должно осуществляться с учетом вида их обслуживания (постоянное дежурство, дежурство на дому, выездные бригады и др.).

1.2.16. Работа электрических сетей 3—35 кВ должна предусматриваться с изолированной или заземленной через дугогасящие реакторы нейтралью.

Компенсация емкостного тока замыкания на землю должна применяться при значениях этого тока в нормальных режимах:

в сетях 3—20 кВ, имеющих железобетонные и металлические опоры на ВЛ, и во всех сетях 35 кВ — более 10 А;

в сетях, не имеющих железобетонных и металлических опор на ВЛ:

при напряжении 3—6 кВ — более 30 А; при 10 кВ — более 20 А; при 15-20 кВ — более 15 А.

При токах замыкания на землю более 50 А рекомендуется применение не менее двух заземляющих дугогасящих реакторов.

КАТЕГОРИИ ЭЛЕКТРОПРИЕМНИКОВ И ОБЕСПЕЧЕНИЕ НАДЕЖНОСТИ ЭЛЕКТРОСНАБЖЕНИЯ

1.2.17. В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории:

Электроприемники I к а т е г о р и и — электроприемники, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству; повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников I категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

Электроприемники II категории — электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники III категории—все остальные электроприемники, не подходящие под определения I и II категорий.

1.2.18. Электроприемники I категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников I категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников I категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), специальные агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить необходимой непрерывности технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.

Электроснабжение электроприемников I категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление рабочего режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

1.2.19. Электроприемники II категории рекомендуется обеспечивать электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников II категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Допускается питание электроприемников II категории по одной ВЛ, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 сут. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему длительному току ВЛ. Допускается питание электроприемников II категории по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему аппарату.

При наличии централизованного резерва трансформаторов и возможности замены повредившегося трансформатора за время не более 1 сут. допускается питание электроприемников II категории от одного трансформатора.

1.2.20. Для элекгроприемников III категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 сут.

УРОВНИ И РЕГУЛИРОВАНИЕ НАПРЯЖЕНИЯ, КОМПЕНСАЦИЯ РЕАКТИВНОЙ МОЩНОСТИ

1.2.21. Для электрических сетей следует предусматривать технические мероприятия по обеспечению качества напряжения электрической энергии в соответствии с требованиями ГОСТ 13109-87 “Электрическая энергия. Требования к качеству электрической энергии в электрических сетях общего назначения”.

1.2.22. Устройства регулирования напряжения должны обеспечивать поддержание напряжения на тех шинах напряжением 6—20 кВ электростанций и подстанций, к которым присоединены распределительные сети, в пределах не ниже 105% номинального в период наибольших нагрузок и не выше 100% номинального в период наименьших нагрузок этих сетей.

1.2.23. Устройства компенсации реактивной мощности, устанавливаемые у потребителя, должны обеспечивать потребление от энергосистемы реактивной мощности в пределах, указанных в условиях на присоединение электроустановок этого потребителя к энергосистеме.

1.2.24. Выбор и размещение устройств компенсации реактивной мощности в электрических сетях следует производить в соответствии с Действующей инструкцией по компенсации реактивной мощности.

Релейная защита (РЗА): виды, устройство и основные принципы

Силовое оборудование электросетей и электрических станций всегда должны быть защищены от сбоев при эксплуатации и короткого замыкания. Таким средством является релейная защита и автоматика (РЗА).

Производители предлагают огромное количество устройств, которые могут заблокировать внезапную аварию в электросети или, например, предупредить с помощью звукового либо светового сигнала о появлении аварийной ситуации.

Чаще всего релейная защита функционирует с автоматикой, а их совместная работа связана с различными типами аварийных ситуаций:

  1. уменьшение частоты электрического тока, которая появляется при возникшей перегрузке генератора из-за короткого замыкания или отсоединения определенной части разных устройств из сети.
  2. увеличенное напряжение появляется из-за возникшей разгрузки электросети.
  3. при токовой перегрузке возникает опасный нагрев изоляции кабеля, появляются искры.
Читайте также  Виды проверок СИЗОД

Основные виды РЗА:

  • МТЗ – максимальная токовая защита. Срабатывает в тот момент, когда ток достигает определенного установленного значения.
    направленная МТЗ. Дополнительно осуществляет контроль за направлением мощности.
  • ГЗ – газовая защита. Необходима для отключения трансформатора при появлении различных повреждений в следствии образования опасных газов.
  • ЛЗШ – логическая защита шин. Необходима для поиска места, где происходит короткое замыкание.
  • дифференциальная защита. Необходима для предохранения трансформаторов, генераторов и шин, сравнивает величины тока на входе и выходе.
  • ДФЗ – дифференциально-фазная защита. Контролирует фазы тока с обеих сторон линии. Если они отклоняются от заданных параметров, то срабатывает защита.
  • ДЗ – дистанционная защита. При коротком замыкании срабатывает при снижении сопротивления сети.
  • ДЗ с ВЧ-блокировкой. При коротких замыканиях используется для отключения подачи тока на воздушных линиях.
  • удаленная защита. Применяется в ситуациях, когда требуется быстрая скорость реакции и особая чувствительность.
  • защита минимального напряжения. Отключает оборудование в том случае, когда напряжение падает ниже установленного минимального значения.
  • защита максимального напряжения. Срабатывает, когда напряжение увеличивается и начинает превышать допустимое значение.

Также релейная защита разделяется по основным признакам:

  1. По способу подключения: первичная и вторичная.
  2. По функциональным признакам: логические и измерительные.
  3. По типу исполнения: электронные и электромеханические.
  4. По способу воздействия: прямое или косвенное.

Особенности конструкции релейной защиты

Устройство РЗА непрерывно совершенствуется благодаря внедрению инновационных технологий. Но основные принципы и элементы конструкции остаются неизменными.

Структуру релейной защиты можно представить в виде схемы:

Электрический сигналМодуль наблюдения процессовУзел логики и анализаИсполнительный блокСигнальный блок

Блок наблюдения проводит мониторинг всех процессов в электрике за счет трансформаторов тока и напряжения, которые проводят измерения. В узле логики и анализа сравниваются поступившие сигналы с максимальным показателем уставок. Защита будет срабатывать, даже если имеется небольшое совпадение данных значений. Исполнительный блок всегда находится в состоянии готовности, ожидая сигнала от логического блока. Сигнальный блок функционирует при помощи света или звука.

Когда пройдет полный цикл срабатывания защиты, специалист ручным способом переводит устройство в первоначальное состояние.

Основные принципы работы

Бывают ситуации, когда нарушается работоспособность релейной защиты. Это происходит по разным причинам: ложное срабатывание, неисправности в самом реле и т.д. Чтобы не допускать снижения трудоспособности РЗА, изготовителями разрабатываются различные принципы и требования, которые необходимо соблюдать при установке, эксплуатации и обслуживании.

Существует несколько основных принципов:

  • принцип надежности. Релейная защита должна бесперебойно выполнять все задачи, заложенные производителем.
  • принцип селективности (избирательный принцип). Релейная защита должна безошибочно находить и устранять место, где произошло повреждение сети.
  • принцип быстродействия. Время от обнаружения повреждения до полного обесточивания должно быть максимально минимизировано.
  • принцип чувствительности. Он позволяет определять типы всевозможных повреждений с помощью коэффициента, величина которого должна соответствовать 1,5-2.

Автоматическое повторное включение

Содержание

  • 1 Назначение
    • 1.1 Требования к устройству АПВ
    • 1.2 Параметры срабатывания
    • 1.3 Режимы АПВ
    • 1.4 Выбор параметров
      • 1.4.1 ВЛ с односторонним питанием
      • 1.4.2 ВЛ с двухсторонним питанием
      • 1.4.3 Выводы
  • 2 АПВ шин и автоматическая сборка схемы
  • 3 Эффективность
  • 4 Источники

Назначение [ править ]

Автоматическое восстановление транзита мощности или питания потребителей после отключения элемента сети устройством релейной защиты, путём повторного включения этого элемента под напряжение.

Согласно ПУЭ [1] , п.3.3.2 должно предусматриваться автоматическое повторное включение:

  • воздушных и смешанных (кабельно-воздушных) линий всех типов напряжением выше 1 кВ. Отказ от применения АПВ должен быть в каждом отдельном случае обоснован. На кабельных линиях 35 кВ и ниже АПВ рекомендуется применять в случаях, когда оно может быть эффективным в связи со значительной вероятностью повреждений с образованием открытой дуги (например, наличие нескольких промежуточных сборок, питание по одной линии нескольких подстанций), а также с целью исправления неселективного действия защиты. Вопрос о применении АПВ на кабельных линиях 110 кВ и выше должен решаться при проектировании в каждом отдельном случае с учётом конкретных условий;
  • шин электростанций и подстанций;
  • трансформаторов;
  • ответственных электродвигателей, отключаемых для обеспечения самозапуска других электродвигателей

Требования к устройству АПВ [ править ]

Согласно ПУЭ [1] , п.3.3.3 :

  • Установленная кратность действия (обычно — однократное);
  • Отсутствие срабатывания при отключении персоналом;
  • Автоматический возврат устройства АПВ в исходное состояние после успешной работы этого устройства;
  • Отсутствие возможности многократного включения на КЗ при любой неисправности в схеме устройства;
  • Отсутствие готовности к работе при отключении от релейной защиты непосредственно после включения персоналом дистанционно или при помощи телеуправления;

Параметры срабатывания [ править ]

Основными параметрами являются:

  • Время срабатывания. Определяется условиями успешности срабатывания устройства АПВ.
  • Время готовности (возврата в исходное состояния). Устройство АПВ не должно быть готовым выдать команду на включение выключателя в случае устойчивого КЗ на элементе. Обычно принимается с большим запасом равное 20 с.

Пуск устройства АПВ может осуществляться:

  • либо по несоответствию положения ключа управления и выключателя;
  • либо от устройств релейной защиты.

Режимы АПВ [ править ]

Для выполнения нужной последовательности автоматического включения выключателей линий с двухсторонним питанием, а также чтобы не было второго АПВ с другого конца при неуспешном АПВ, существует несколько дополнительных режимов:

  • Без контролей или «Слепое». В данном случае устройство АПВ ничего дополнительно не контролирует и по прошествии времени срабатывания формирует команду на включение выключателя;
  • С контролем наличия (U>70%) или отсутствия напряжения (U Выбор параметров [ править ]

ВЛ с односторонним питанием [ править ]

$ Large t_ <с,АПВ>ge t_ <в,в>+ t_ <д,с>+ t_ <зап>$ , где

$ Large t_ <с,АПВ>$ — время срабатывания АПВ;

$ Large t_ <д,с>$ — время деонизации среды в месте к.з. после его отключения (0,1-0,4 с);

$ Large t_ <в,в>$ — время включения выключателя (0,060-0,800 с);

$ Large t_ <зап>$ — время запаса (0,5-0,7 с).

При запуске АПВ от релейной защиты время срабатывания АПВ увеличивается на время отключения выключателя.

ВЛ с двухсторонним питанием [ править ]

В данном случае необходимо ждать отключения ВЛ с двух сторон.

$ Large t_ <с,АПВ,св>$ — время срабатывания АПВ «своего» выключателя (в месте установки АПВ);

$ Large t_ <з,пр>$ — время срабатывания защит с противоположной стороны (резервные защиты: 0,4-3,0 c);

$ Large t_ <о,в,пр>$ — время отключения выключателя с противоположной стороны (0,020-0,070 с);

$ Large t_ <д,с>$ — время деонизации среды в месте к.з. после его отключения (0,1-0,4 с);

$ Large t_ <зап>$ — время запаса (0,5-0,7 с);

$ Large t_ <з,св>$ — время срабатывания защит своей стороны (основные защиты: 0,020-0,100 с);

$ Large t_ <о,в,св>$ — время отключения выключателя своей стороны (0,020-0,070 с);

$ Large t_ <в,в,св>$ — время включения выключателя своей стороны (0,060-0,800 с).

При использовании контролей напряжения для выключателя, включаемого первым, время срабатывания АПВ считается по формуле (1), а для выключателя, включаемого вторым с контролем наличия напряжения, используется следующая формула:

$ Large t_ <с,АПВ>$ — время срабатывания АПВ;

$ Large t_ <з,пр>$ — время срабатывания защит с противоположной стороны при включении от АПВ(резервные защиты: 0,1-3,0 c);

$ Large t_ <о,в,пр>$ — время отключения выключателя с противоположной стороны (0,020-0,070 с);

$ Large t_ <зап>$ — время запаса (0,5-0,7 с).

Выводы [ править ]

Обычно время АПВ принимается в диапазоне 1,0 — 5,0 с

АПВ шин и автоматическая сборка схемы [ править ]

После работы ДЗШ может применяться АПВ шин: от устройства АПВ включается одно из питающих присоединений и подаёт напряжение на отключенную секцию.

Далее возможны два сценария:

  • Если АПВ шин неуспешное, то ДЗШ срабатывает ещё раз, формируя сигнал отключения и запреты АПВ для всех присоединений;
  • В случае успешного АПВ секция шин ставится под напряжение. Остальные присоединения включаются действием оперативного персонала, либо возможно применение автоматической сборки схемы (АСС).

Уставки ДЗШ должны быть выбраны так, чтобы обеспечить чувствительность при КЗ на шинах при питании от этого источника (или должно вводиться очувствление ДЗШ).

АСС может быть выполнена следующим образом:

  • В виде отдельной панели. Пуск производится после работы ДЗШ и после появления напряжения на отключаемой СШ. Панель включает обратно выключатели каждые 1-2 с;
  • С использованием АПВ присоединений. В данном случае, АПВ присоединений, в соответствии с их заданным режимом и уставками включают обратно выключатели. При использовании такого решения, необходимо время срабатывания АПВ присоединений отстраивать от одновременного включения (дополнительно к их основным условиям выбора).
  • С использованием двух независимых функций (таймеров и режимов) АПВ. В отличии от использования одной функции АПВ присоединения, позволяет выбирать отдельное время для АСС и для АПВ присоединения.

Согласно п.5.2.16 Правил по переключениям [2] , при операциях шинными разъединителями с ручным приводом необходимо на время операций выводить АПВ шин. Для этих целей предусматривается возможность оперативного вывода АПВ шин после действия ДЗШ (по факту работы ДЗШ сразу формируется запрет АПВ присоединений).

Эффективность [ править ]

На ВЛ успешность АПВ составляет 65-70% [3] . Данное обстоятельство объясняется тем, что большинство КЗ на ВЛ оказываются неустойчивыми и самоустраняются при отсутствии напряжения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: