Поправка на уплотнение грунта СНИП - VISTAGRUP.RU

Поправка на уплотнение грунта СНИП

Коэффициент Разрыхления Грунта | Таблица СНИП

📊 Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована.

Все грунты с точки зрения строительства можно разделить на две группы:

  1. Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
  2. Несцементированные — выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.

На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:

  • Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
  • Сцепление – сопротивление сдвигу;
  • Плотность — то есть масса одного кубического метра грунта в естественном состоянии;
  • Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.

Таблица Разрыхления Грунта

Исходя из строительных норм и правил (СНИП), КРГ (первоначальный), показатель плотности в соответствии категории, приведены в таблице:

Категория Наименование Плотность, тонн / м3 Коэффициент разрыхления
І Песок влажный, супесь, суглинок, разрыхленный 1,4–1,7 1,1–1,25
І Песок рыхлый, сухой 1,2–1,6 1,05–1,15
ІІ Суглинок, средний -мелкий гравий, легкая глина 1,5–1,8 1,2–1,27
ІІІ Глина, плотный суглинок 1,6–1,9 1,2–1,35
ІV Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт 1,9–2,0 1,35–1,5

Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.

Вся необходимая информация представлена далее в таблице:

Наименование Первоначальное увеличение объема после разработки, % Остаточное разрыхление, %
Глина ломовая 28–32 6–9
Гравийно-галечные 16–20 5–8
Растительный 20–25 3–4
Лесс мягкий 18–24 3–6
Лесс твердый 24–30 4–7
Песок 10–15 2–5
Скальные 45–50 20–30
Солончак, солонец
мягкий 20–26 3–6
твердый 28–32 5–9
Суглинок
легкий, лессовидный 18–24 3–6
тяжелый 24-30 5-8
Супесь 12-17 3-5
Торф 24-30 8-10
Чернозем, каштановый 22-28 5-7

КР по СНИП

Коэффициент разрыхления грунта по СНИП:

  • КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
  • КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
  • КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
  • КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
  • КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.

Рассчитываем самостоятельно

Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.

Известны следующие данные:

  1. ширина котлована — 1,1 м;
  2. вид почвы — влажный песок;
  3. глубина котлована — 1,4 м.

Вычисляем объем котлована (Xk):

Xk = 41*1,1*1,4 = 64 м3.

Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:

Xr = 64*1,2 = 77 м3.

Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.

Для чего определяют разрыхления грунта?

Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.

В строительстве виды почвы условно делят на два основные вида:

  1. сцементированный;
  2. несцементированный.

Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.

Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.

Коэффициент уплотнения грунта

Коэффициент уплотнения грунта – это отношение фактической плотности грунта (скелета грунта) в насыпи, к максимальной плотности грунта (скелета грунта).

Что значит коэффициент уплотнения 0,95?

Коэффициент уплотнения грунта 0,95 означает, что фактическая плотность грунта составляет 95% от максимально возможной плотности грунта (определяется в грунтовой лаборатории).

Нормативные коэффициенты уплотнения приведены в таблице в конце страницы.

Данный коэффициент определяют следующими методами:

1. Метод режущего кольца — отбирают пробы грунта из уплотняемого слоя и производят испытание в грунтовой лаборатории в соответствии с ГОСТ 5180-2015 «Грунты. Методы лабораторного определения физических характеристик». Главный недостаток метода: длительные испытания (транспортирование и испытание в лаборатории)

Режущие кольца для определения коэффициента уплотнения грунта

2. Динамическим плотномером грунта (ДПГ) — принцип действия основан на методе падающего груза, при котором измеряется сила удара и деформация грунта. Применяется совместно с методом режущего кольца с целью ускорения определения коэффициента уплотнения грунта.

  • На начальном этапе ДПГ калибруется в нескольких местах отбора проб по данным испытаний по методу режущего кольца (ГОСТ 5180-2015)
  • Затем по данным калибровки определяют коэффициент уплотнения в остальных точках, что позволяет получить результаты сразу на площадке.

Требуемый коэффициент уплотнения грунта (согласно СНиП 3.02.01-87) обратной засыпки или насыпи представлен в таблице 1.

Таблица 1. Коэффициент уплотнения грунта

Тип грунта Контрольные значения коэффициентов уплотнения kcom
при нагрузке на поверхность уплотненного грунта, МПа (кг/см 2 )
0,05 – 0,2 (0,5 – 2) св. 0,2 (2)
при общей толщине отсыпки, м
до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6
Глинистые 0,92 0,93 0,94 0,95 0,94 0,95 0,96 0,97 0,95 0,96 0,97 0,98
Песчаные 0,91 0,92 0,93 0,94 0,93 0,94 0,95 0,96 0,94 0,95 0,96 0,97

Таким образом, например, коэффициент уплотнения грунта обратной засыпки выполненной из песка, мощностью отсыпки 2,5 м и нагрузкой на насыпь 0,3МПа составляет 0,95

Уплотнение грунта СНиП 3.02.01-87

Строительству любых зданий или сооружений предшествует огромная работа по проектированию и подготовке застраиваемой площади к осуществлению планируемых мероприятий. Это относится ко всем объектам, которые планируется использовать длительный период, исчисляемый десятками и сотнями лет. Во время подготовки проводятся всевозможные пробы и тесты, показывающие пригодность площадей к дальнейшим действиям, например, берутся пробы грунта, вычисляется уровень подземных вод и прочие факторы. Если плотность грунта в зависимости от его типа не соответствует плановым показателям, проводится ряд мероприятий, направленных на уплотнение грунта.

Проведение подобных мероприятий способствует улучшению технических показателей, и как следствие решает ряд проблем, которые могут возникнуть в будущем, к примеру, проседание грунта со всеми вытекающими последствиями. Первым внешним проявлением проседания грунта могут стать трещины на стенах, а при наложении иных факторов к разрушению объекта.

Методы уплотнения грунта

Качественный состав грунтов отличается в зависимости от географического расположения. При этом каждый из них имеет свою плотность, влажность и способность к проседанию. Поэтому для каждого вида почв разрабатывается комплекс мер, направленный на улучшение их характеристик, формирующий целую методологию.

Читайте также  Обязанности водителя инкассатора

Способность грунта к уплотнению определяется коэффициентом уплотнения, который вычисляется в лабораторных условиях соответствующими органами. И в зависимости от полученных показателей выбирается оптимальный метод уплотнения. При этом впоследствии рассчитывается усилие, прикладываемое для получения требуемого результата.

Условно методы разделяют на группы в зависимости от способа достижения цели – выведения воздуха из слоя почвы на заданной глубине. Так, различают поверхностные и глубинные способы. А категории оборудования и способы его применения выделяют статические, вибрационные, ударные и комбинированные методы, сочетающие в себе несколько видов влияния (давления). При этом тип оборудования отображает способ применения силы, к примеру, пневматические катки.

Часть таких методов может применяться для малого частного строительства, другие же используются исключительно при возведении масштабных объектов при согласовании с местными властями, поскольку некоторые из них могут повлиять не только на заданную площадь, но и окружающие объекты и привести к их полному или частичному разрушению.

СНиП коэффициента уплотнения грунта

Все подобные операции четко регламентированы на законодательном уровне и поэтому их проведение ведется под контролем соответствующих организаций. Для того чтобы избежать возможных ошибок регламент и методология фиксируются в соответствующих документах – нормах (СНиП).

Уплотнение грунта и соответствующие показатели в российском законодательстве отражены в документах СП 45.13330.2012 и СНиП 3.02.01-87. Дата принятия этих документов отражена в их названии, соответственно первый принят в 2012 году, а второй в 1987, что означает его моральную изношенность. Однако действия, описанные в документах, актуализированы в 2013. Они описывают уплотнение грунтов разных видов и грунтовых подушек, укладываемых под фундамент сооружений различной конфигурации, в том числе подземной.

Каток для уплотнения грунта

Для поверхностного уплотнения грунта применяются различного рода катки. В зависимости от характера работ и размеров строительного объекта они могут быть ручными и самоходными. Ручные обычно используются там, где сильное уплотнение почвы не требуется, например, при создании песчаной подушки для мощеных пешеходных дорожек. В данном конкретном случае сильных нагрузок вроде многотонной конструкции не будет, поэтому можно обойтись таким вариантом.

Самоходные и управляемые катки применяются на застраиваемых площадях круглой формы. Однако такой способ обработки не всегда приемлем, поэтому применяются катки, которые движутся не по спирали или кругу, а исключительно взад-вперед.

Катки для уплотнения грунта различаются по весу, одни из них по весу едва достигают в половину тонны, другие, напротив, имеют вес в десятки тонн.

Уплотнение грунта трамбовками

Кроме катков, на небольших участках с песчаными и глинистыми почвами применяют трамбовки. Они представляют собой плиты, подсоединяемые к кранам или экскаваторам, которые сбрасывают их с фиксированной высоты. Результат – более быстрая утрамбовка на большей глубине от полуметра до метра. Однако подобная технология быстро изнашивает технику. Несмотря на счастливые случайности, уплотнение грунта чрезвычайно травмоопасная операция, поэтому выполнять ее должны профессионалы.

Что такое коэффициент уплотнения

Коэффициент уплотнения – это показатель, демонстрирующий, насколько изменяется объем сып у чего материала после трамбовки или перевозки. Определяется он по соотношению общей и максимальной плотности.

Любой сыпучий материал состоит из отдельных элементов – зерен. Между ними всегда есть пустоты, или поры. Чем выше процент этих пустот, тем больший объем б у дет занимать вещество.

Попробуем объяснить это простым языком: вспомните детскую игру в снежки. Чтобы получить хороший снежок, нужно зачерпнуть из сугроба горсть побольше и посильнее ее сжать. Таким образом мы сокращаем количество пустот между снежинками, то есть уплотняем их. При этом уменьшается и объем.

То же самое будет, если насыпать в стакан немного крупы , а затем встряхнуть ее или утрамбовать пальцами. Произойдет уплотнение зерен.

Иными словами, коэффициент уплотнения – это и есть разница между материалом в его обычном состоянии и утрамбованном.

Для чего нужно знать коэффициент уплотнения

Знать коэффициент уплотнения для сыпучих материалов необходимо, чтобы:

  • Проконтролировать, действительно ли вам привезли заказанное количество материала
  • Купить п р авильное количество песка, щебня, отсева для засыпки котлованов, ям или канав
  • Рассчитать вероятную усадку грунта при закладке фундамента, прокладке дороги или тротуарной плитки
  • Правильно рассчитать количество бетонной смеси для заливки фундаментов или перекрытий

Дальше мы подробнее расскажем обо всех этих сл у чаях.

Коэффициент уплотнения при транспортировке

Представьте, что самосвал везет 6 м³ щебня с карьера на объект заказчика. В пути ему попадаются ямы и выбоины. Под воздействием вибрации зерна щебня уплотняются , объем сокращается до 5,45 м³. Это называется утряской материала.

Как же убедиться в том, что на объект привезли то количество товара, которое указано в документах? Для этого нужно знать конечный объем материала (5,45 м³) и коэффициент уплотнения (для щебня он равен 1,1). Эти две цифры перемножаются, и получается начальный объем – 6 кубов. Если он не совпадает с тем, что написано в документах, значит мы имеем дело не с утряской щебня, а с недобросовестным п р одавцом.

Коэффициент уплотнения при засыпке ям

В строительстве есть такое понятие как усадка. Грунт или любой другой сыпучий материал уплотняется и уменьшается в объеме под действием собственного веса или давлением различных конст р укций (фундамента, тротуарных плит). Процесс усадки нужно обязательно учитывать при засыпке канав, котлованов. Если этого не сделать, через некоторое время образуется новая яма.

Чтобы заказать необходимое количество материала для засыпки, нужно знать объем ямы. Если вам известна ее форма, глубина и ширина, можете воспользоваться для р асчета нашим калькулятором. После этого полученную цифру нужно умножить на насыпную плотность материала и его коэффициент уплотнения.

При засыпке правильно рассчитанного материала в яму может получиться холмик. Дело в том, что в естественных условиях усадка происходит за определенный промежуток времени. Уско р ить процесс можно с помощью трамбовки. Ее проводят вручную или с помощью специальных механизмов.

Коэффициент уплотнения в строительстве

Наверное, вам известны случаи, когда в зданиях сразу после постройки появлялись трещины. А ямы на новых дорогах или провалившаяся тротуарная плитка на дорожках и во дворах? Это случается , если неправильно рассчитать усадку грунта и не предпринять соответствующие меры по ее устранению.

Чтобы знать усадку, используется коэффициент уплотнения. Он помогает понять, насколько утрамбуется тот или иной грунт в определенных условиях. Например, под давлением веса здания , плитки или асфальта.

Некоторые грунты имеют настолько сильную усадку, что их приходится замещать. Другие виды перед строительством специально трамбуют.

Как узнать коэффициент уплотнения

Легче всего взять данные о коэффициенте уплотнения из ГОСТов. Они р ассчитаны для разных видов материала.

Наименование материала Коэффициент уплотнения
ПГС 1,2
ПЩС 1,2
Песок 1,15
Керамзит 1,15
Щебень 1,1
Многокомпонентная почвосмесь 1,5

В лабораторных условиях коэффициент уплотнения определяют следующим образом:

  • Измеряют общую или насыпную плотность материала. Для этого измеряют массу и объем образца, вычисляют их соотношение
  • Затем пробу встряхивают или прессуют, измеряют массу и объем , после чего определяют максимальную плотность
  • По соотношению двух показателей вычисляют коэффициент
Читайте также  Расчет водоотдачи водопроводной сети

Документы указывают усредненные значения коэффициента уплотнения. Показатель может меняться в зависимости от различных факторов. Приведенные в таблице циф р ы достаточно условные, но они позволяют рассчитать усадку больших объемов материала.

На значение коэффициента уплотнения влияют:

  • Особенности транспорта и способа перевозки
    Если материал транспортируют по выбоинам или железной дороге , он уплотняется сильнее , чем при перевозке по ровной трассе или морю
  • Гранулометрический состав (размеры, формы зерен, их соотношение)
    При неоднородном составе материала и наличии лещадных частиц (плоской или игловидной форм) коэффициент будет ниже. А при наличии большого количества мелких частиц – выше
  • Влажность
    Чем больше влажность, тем меньше коэффициент уплотнения
  • Способ трамбовки
    Если материал утрамбовывают вручную, он уплотняется х у же, чем после применения вибрирующих механизмов
  • Насыпная плотность
    Коэффициент уплотнения напрямую связан с показателем насыпной плотности. Как мы уже сказали, в процессе трамбовки или транспортировки плотность материала меняется, так как становится меньше пустот между частицами. Поэтому насыпная плотность во время отгрузки в автомобиль на ка р ьере и после прибытия к заказчику разная. Эту разницу можно высчитать и проверить как раз благодаря коэффициенту уплотнения.
    Подробнее об этом вы можете прочитать на странице Насыпная плотность сыпучих материалов

Также вы можете посмотреть конкретные показатели для следующих материалов:

  • Асфальт
  • Глина
  • Грунт
  • Керамзит
  • Отсев
  • ПГС
  • Песок
  • Скальный грунт
  • Уголь
  • Щебень

Коэффициент уплотнения – это важный показатель, помогающий узнать, сколько сыпучего материала заказывать. Он дает возможность проконтролировать, действительно ли вам привезли заказанный объем. Показатель нужно знать строителям при возведении зданий , чтобы правильно рассчитать наг р узку на основание.

СНиП 3.06.03-85 — Страница № 51

Конструктивный элемент, вид работ и контролируемый параметр

Значения нормативных требований

1 Земляное полотно

1.1 Подготовка основания земляного полотна:

1.1.1 Толщина снимаемого плодородного слоя грунта

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±40 %, остальные — до ±20 %

1.1.2 Снижение плотности естественного основания

Не более 10 % результатов определений могут иметь отклонения от проектных значений до 4 %, остальные должны быть не ниже проектных значений

1.2 Возведение насыпей и разработка выемок:

1.2.1 Снижение плотности слоя земляного полотна*

Не более 10 % результатов определений могут иметь отклонения от проектных значений до 4 %, а остальные должны быть не ниже проектных значений

1.2.2 Высотные отметки продольного профиля

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±20 мм; остальные — до ±10 мм

1.2.3 Расстояния между осью и бровкой земляного полотна

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±20 см, остальные — до ±10 см

1.2.4 Поперечные уклоны

Не более 10 % результатов определений могут иметь отклонения от проектных значений в пределах от минус 0,010 до 0,015, остальные — до ±0,005

1.2.5 Уменьшение крутизны откосов

Не более 10 % результатов определений могут иметь отклонения от проектных значений до 20 %, остальные — до 10 %

1.3 Устройство водоотвода:

1.3.1 Увеличение поперечных размеров кюветов, нагорных и других канав (по дну)

Не более 10 % результатов определений могут иметь отклонения от проектных значений до 10 см, остальные — до 5 см

1.3.2 Глубина кюветов, нагорных и других канав (при условии обеспечения стока)

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±10 см, остальные — до ±5 см

1.3.3 Поперечные размеры дренажей

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±10 см, остальные — до ±5 см

1.3.4 Продольные уклоны дренажей

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±0,002, остальные — до ±0,001

1.3.5 Ширина насыпных берм

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±30 см, остальные — до ±15 см

1.4 Устройство присыпных обочин

1.4.1 Снижение плотности грунта в обочинах

Не более 10 % результатов определений могут иметь отклонения от проектных значений до 4 %, остальные должны быть не ниже проектных значений

1.4.2 Толщина укрепления

Не более 10 % результатов определений могут иметь отклонения от проектных значений в пределах от минус 22 до плюс 30 мм, остальные — до ±15 мм

1.4.3 Поперечные уклоны обочин

Не более 10 % результатов определений могут иметь отклонения от проектных значений в пределах от минус 0,010 до 0,015, остальные — до ±0,005

2 Основания и покрытия дорожных одежд

2.1 Высотные отметки по оси 1

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±20 мм, остальные — до ±10 мм

2.2.1 Основания и покрытия асфальтобетонные, цементобетонные

Не более 10 % результатов определений могут иметь отклонения от проектных значений от минус 7,5 см до 10 см, остальные до ±5 см

2.2.2 Все остальные типы оснований и покрытий

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±10 см, остальные — от минус 5 см до плюс 10 см

2.3 Толщина слоя:

2.3.1 Основания и покрытия асфальтобетонные и цементобетонные

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±10 %, остальные до ±5 %

2.3.2 Все остальные типы оснований и покрытий

Не более 10 % результатов определений могут иметь отклонения от проектных значений в пределах от минус 15 мм до 20 мм, остальные до ±10 мм

2.4 Поперечные уклоны

Не более 10 % результатов определений могут иметь отклонения от проектных значений до ±0,010, остальные — до ±0,005

2.5 Ровность (просвет под рейкой длиной 3 м):***

2.5.1 Основания и покрытия асфальтобетонные, монолитные цементобетонные и из каменных материалов и грунтов, обработанных вяжущими

Не более 5 % результатов определений могут иметь значения просветов до 6 мм, остальные — до 3 мм

2.5.2 Все остальные виды покрытий и оснований

Не более 5 % результатов определений могут иметь значения просветов до 15 мм, остальные — до 7 мм

2.6 Превышение граней смежных плит (в швах) монолитных цементобетонных:

Не более 10 % результатов определений могут иметь значения до 4 мм, остальные до 2 мм

Не более 20 % результатов определений могут иметь значения до 5 мм, остальные до 3 мм

2.7 Прямолинейность продольных и поперечных швов покрытия и основания

Не более 5 % результатов определений могут иметь отклонения от прямой линии до 10 мм, остальные — до 5 мм

2.8 Превышение граней смежных плит сборных цементобетонных покрытий

Не более 20 % результатов определений могут иметь значения до 5 мм, остальные до 3 мм

2.9 Ширина пазов деформационных швов всех видов покрытий

Отклонения от проектных значений до ±20 %, но не более 35 мм

* При отсыпке земляного полотна из скальных (крупнообломочных) грунтов этот показатель для оценки качества не используется.

** При оценке качества устройства сборных цементобетонных покрытий этот показатель не определяется.

Читайте также  Как устроен датчик движения?

*** При оценке качества устройства дополнительных слоев основания (морозозащитных, изолирующих, дренирующих и др.) этот показатель не определяется.

1 Предельно допускаемые отклонения высотных отметок по оси покрытия допускаются только при условии обеспечения продольной ровности.

Приложение Б

Методика измерений при помощи дорожного профилометра

Дорожными профилометрами (ДП) называются измерительные приборы (системы, установки), которые могут измерять и регистрировать микропрофиль автомобильной дороги в полосе длин волн неровностей 0,5 — 60 м и диапазоне амплитуд неровностей ±100 мм.

Результатом измерения ДП является микропрофиль участка автомобильной дороги заданной длины, записанный с шагом измерения не более 0,05 м. Микропрофиль регистрируется на компьютерных носителях информации для дальнейшей обработки и расчета оценочных показателей. Программное обеспечение, используемое для этих целей, должно быть аттестовано в составе измерительных систем или отдельно в зависимости от используемых измерительных схем.

Измерение ДП проводится непрерывно на всей длине участка по полосам наката на расстоянии 0,5 — 1,0 м от каждой кромки покрытия или края полосы движения путем перемещения ДП по заданному участку со скоростью, указанной в документации ДП.

Записанные на компьютерных носителях результаты измерения подлежат математической обработке с помощью специальной программы, аттестованной для этих целей, включающей в себя полосовой фильтр Баттерворта 4-го порядка с полосой пропускания 0,5 — 60 м. Для исключения сдвига фазы фильтрацию необходимо выполнить в прямом и обратном направлениях полученной записи.

В результате математической обработки отфильтрованного микропрофиля определяют оценочные значения ровности по различным показателям: международному индексу ровности IRI, просветам под трехметровой рейкой, отклонениям (амплитудам) высотных отметок точек профиля.

Результаты обработки могут быть представлены в форме, дающей наглядное представление о полученных значениях (таблица, график и др.).

Для получения оценочных показателей IRI и просветов под рейкой обработку результатов измерения следует проводить для отрезков участка длиной 100 м, а для метода амплитуд высотных отметок точек профиля для отрезков длиной 300 — 400 м.

ДП должен быть сертифицирован Федеральным агентством по техническому регулированию и метрологии и внесен в реестр средств измерений. Поверка ДП, проведение измерений и получение их результатов должны проводиться в соответствии с методиками, утвержденными при сертификации ДП.

Приложение В

Устройство земляного полотна, устройство оснований и покрытий из щебня (гравия), песка, песчано-гравийных и песчано-щебеночных смесей при армировании геосинтетическими материалами

В.1 При устройстве прослоек из геосинтетических материалов (ГМ) в применяемые технологии дополнительно вводят следующие операции:

подготовка подстилающего прослойку грунта;

транспортирование, распределение по участку геосинтетиков, их укладка и, при необходимости, соединение методом сшивания или сварки полотен;

отсыпка на прослойку материала вышележащего слоя, его распределение и уплотнение.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: